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We consider two dimensional lattice free fields (harmonic crystals) and study the
asymptotic behavior of the fields under the constraint that each field lies above
a hard-wall and is forced to be piled on top of another. This problem is the so-
called entropic repulsion and our result extends that of ref. 2 which studied the
higher dimensional case.

KEY WORDS: Entropic repulsion; Gaussian field; Gibbs measure; multi-inter-
face phenomena.

1. INTRODUCTION AND RESULT

Under the situation that two distinct pure phases like crystal/vapor coexist
in space, hypersurfaces called interfaces are formed and separate these dis-
tinct phases at macroscopic level. One of the problems related to such
phase separating interface is the study of the effect of a hard-wall. Espe-
cially, to analyze the phenomena of the entropic repulsion and also the
wetting transition, asymptotic behavior of the interface under the con-
straint that the interface fluctuates above a hard-wall has been studied for
several interface models.

On the other hand, instead of one random interface, some models of
two or more random interfaces interacting through the constraint that one
interface lies above the other one has been studied (cf. refs. 5 and 6 and
references therein). Such model represents the coexistence of three or more
phases and arises when we analyze three phases in thermal equilibrium, A,
B, and C, and layer of the phase C is developed at the boundary between
the phase A and B, in order to lower the surface tension. Then, there are



two interfaces, one between A and C, and the other one between C and B.
For example, the model of the membrane and so on (cf. refs. 13 and 15,
etc.). However, as regards the precise asymptotic behavior of each inter-
face, the previous results in the model of two or more random interfaces
are not necessarily satisfactory and in this paper, we will adapt Gaussian
lattice free fields (harmonic crystals) as the model of random interfaces and
investigate this problem.

Let d \ 2, K ¥ N, V=[ − 1, 1]d and VN=NV 5 Zd. f i={f i
x}x ¥ VN

¥ RVN, 1 [ i [ K denote independent centered Gaussian fields on RVN with
the same covariance matrix GN — (−DN)−1 where DN is the discrete Lapla-
cian on Zd with Dirichlet boundary condition outside VN. We denote the
common law as PN. Then, the configuration f=(f1, f2,..., fK) is inter-
preted as the effective modelization of K (discretized) random interfaces
embedded in the d+1-dimensional space and the spin f i

x denotes the height
of the ith interface at site x ¥ VN. Its law is given by the product measure
PK

N — P é K
N .

Our problem here is to examine the asymptotic behavior of the fields
f i, 1 [ i [ K under the measure PK

N( · | WK, +
N, e ) as N Q ., where

WK, +
N, e ={f; 0 [ f1

x [ f2
x [ · · · [ fK

x for every x ¥ VN, e},

and VN, e={x ¥ VN; dist(x, Vc
N) \ eN}, 0 < e < 1. If we consider the case of

K=1, the problem is entropic repulsion between one lattice free field and a
hard-wall and this problem has been studied by a number of authors (cf.
refs. 10, 11, and references therein). One of the main result is the following
(cf. refs. 4 and 8 for d \ 3 and ref. 3 for d=2):

lim
N Q .

sup
x ¥ VN, e

PN
1 : f1

x

`log d (N)
− `4gd

: \ g | W1, +
N, e

2=0, (1.1)

for every 0 < e < 1 and g > 0, where

logd(N)=˛ (log N)2 if d=2,
log N if d \ 3,

and

gd=3
2
p if d=2,
(−D)−1 (0, 0) if d \ 3.

D is the discrete Laplacian on Zd. Namely, the field is pushed to infinity by
a hard-wall and its level is `4gd logd(N). Also, entropic repulsion for one
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lattice field above an i.i.d. random wall instead of a hard-wall was studied
by ref. 1.

For the multi-interface case, only the following higher dimensional
case result has been obtained by ref. 2. Let d \ 3 and K=2. Then, it holds
that

lim
N Q .

P2
N(SN, e(f i) [ (`4gd li − g) `log N | W2, +

N, e )=0,

and

lim
N Q .

P2
N(SN, e(f i) \ (`4gd li+g) `log N | W2, +

N, e )=0,

for every 0 < e < 1, g > 0, and i=1, 2, where l1=1, l2=`2+1, and
SN, e(f i)= 1

|VN, e | ;x ¥ VN, e
f i

x denotes the sample mean of the field f i over VN, e.

Remark 1.1. Actually, in ref. 2, entropic repulsion for two interfa-
ces with the different covariances has been studied; see also Remark 1.4
below.

Now, we are in the position to state our result for the case of d=2.
The first result is on the asymptotics of the probability of the event WK, +

N, e .

Theorem 1.1. Let d=2. For every K ¥ N and 0 < e < 1, we have

lim
N Q .

1
(log N)2 log PK

N(WK, +
N, e )=−2 1 C

K

i=1
l2

i
2 g2Ce,

where li=`2 (i−1)+1, 1 [ i [ K, Ce=Cap(Ve)=inf{ 1
2d ||“f||2

2; f ¥ C.

0 (V),
f \ 0, f(r)=1 if r ¥ Ve} and Ve={r ¥ V; dist(r, Vc) \ e}.

The corresponding result for the case of d \ 3 and K=2 was also
shown by ref. 2. Using this probability estimate, we obtain the asymptotics
of the sample mean of each field under the conditional measure
PN( · | WK, +

N, e ) as N Q ..

Theorem 1.2. Let d=2. For every K ¥ N, 0 < e < 1, g > 0, and
1 [ i [ K, we have

lim
N Q .

PK
N(SN, e(f i) [ (`4g2 li − g) log N | WK, +

N, e )=0, (1.2)
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and

lim
N Q .

PK
N(SN, e(f i) \ (`4g2 li+g) log N | WK, +

N, e )=0, (1.3)

where li=`2 (i − 1)+1, 1 [ i [ K.

Combining this two dimensional case result with that of ref. 2 for
higher dimensional case, although the order of the repulsion of each field
does not change, the size of the repulsion between two layered interfaces
becomes bigger than one interface and a hard-wall case for arbitrary
dimension. Especially, if we consider the event {f; f1

x [ f2
x for every

x ¥ VN, e} instead of W2, +
N, e then the difference of these two fields f2 − f1

asymptotically behaves `2 `4gd logd(N) by the result of refs. 3 and 4
since the field f2 − f1 is a centered Gaussian with covariance 2GN under P2

N

and the condition {f; f1
x [ f2

x for every x ¥ VN, e} is just a hard-wall condi-
tion for f2 − f1. Therefore, these results imply that each field does not give
up easily its freedom of the fluctuation and two fields are shifted above to
keep enough width of the fluctuation by the hard-wall and non-intersecting
condition.

The proof of the result will be given in Sections 2 and 3. By consid-
ering each difference of layered two interfaces, we can reduce our problem
to one interface case and adapt the strategy of ref. 3 which studied the
entropic repulsion for one lattice free field with a hard-wall in two dimen-
sion. The proof of the lower bound of the asymptotics of the probability is
given by a well-known entropy argument. The proof of the probability
upper bound and the height lower bound is given by a conditioning argu-
ment and we shall use the result of ref. 3 obtained by a multi-scale analysis.

Finally, we give several remarks about the result.

Remark 1.2. In the case of one interface, the pointwise estimate of
repulsion (1.1) is obtained by iterating FKG argument thorough the
sample mean estimate of repulsion as Theorem 1.2 (cf. ref. 7, Section 3 and
ref. 4, Section 4). However, in two or more interfaces case, since the fields
{f1

x}x ¥ VN
and {f2

x − f1
x}x ¥ VN

are negatively correlated, we have not obtained
the comparison estimate as

P2
N(f i

x \ a | W2, +
N (A)) [ P2

N(f i
x \ a | W2, +

N (B)),

for every A, B … VN with A … B, x ¥ A, a \ 0 and i=1, 2 where

W2, +
N (D)={f; 0 [ f1

x [ f2
x for every x ¥ D},
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for D … VN. This lack of comparison estimate causes us to obtain only the
sample mean estimates of repulsion; see also Section 1.3 of ref. 2.

Remark 1.3. For the case of d \ 3, only the two interfaces model
has been studied in ref. 2. By considering each difference of layered two
interfaces, their results for the probability upper bound and the height
lower bound can be easily extended for arbitrary finite number of interfa-
ces. However, the lack of the comparison estimate under the conditioned
measure as stated in Remark 1.2 affects the proof of the probability lower
bound for higher dimensional case. Therefore, only the two interfaces
model has been considered in ref. 2. On the other hand, different from the
higher dimensional case, a simple entropy argument gives the appropriate
lower bound of the probability for two dimensional case (cf. refs. 3 and 4)
and the lack of the comparison estimate does not affect for multi-interface
model. Therefore, we can treat arbitrary number of interfaces for two
dimensional case.

Remark 1.4. It might be natural to consider the different covariance
for each interface as the result of ref. 2 for d \ 3. For the case that each
covariance is proportional to (−DN), namely the case that f i, 1 [ i [ K are
independent centered Gaussian fields with the different covariance
qi(−DN), qi > 0, we can easily extend our result even if d=2. However,
since our proof relies on that of ref. 3 for the two dimensional one interface
case, our result for d=2 is restricted to this nearest neighbor harmonic
crystals model.

2. PROOF OF THEOREM 1.1

In the following two sections, we always assume that d=2. The
following estimates of the variance will be used throughout this paper (cf.
ref. 12). Recall that PN is a law of the two dimensional centered Gaussian
field on RVN with covariance matrix GN.

Lemma 2.1. For every 0 < e < 1, there exists a constant C1 > 0 such
that

sup
x ¥ VN, e

|VarPN
(fx) − g2 log N| [ C1,

and there exists a constant C2 > 0 such that

sup
x ¥ VN

VarPN
(fx) [ g2 log N+C2.
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2.1. Proof of Theorem 1.1: Lower Bound

For a > 0 and f ¥ C.

0 (V) with f \ 0 and f(r)=1 if r ¥ Ve, let
aN=a log N and kN={kN

x }x ¥ VN
, kN

x =aN f(x
N). We define a shifted

measure P̃K
N(df)=êK

i=1 PN p T−1
lik

N(df i) where Tk is a shift operator
defined by Tkf=f+k and li=`2 (i − 1)+1, 1 [ i [ K. Namely, P̃K

N

represents a product measure of K independent Gaussian fields
{f i

x}x ¥ VN
, 1 [ i [ K which have the same covariance GN and the different

mean lik
N, respectively. Then, we have

H(P̃K
N | PK

N)=E P̃
K
N 5log

dP̃K
N

dPK
N

6= C
K

i=1
H(PN p T−1

lik
N | PN),

where H(P | Q)=EP[log dP
dQ] denotes a relative entropy of P with respect to

Q for two probability measures P and Q.
Now, we have WK, +

N, e =4K
i=1 {f; f i

x − f i − 1
x \ 0 for every x ¥ VN, e} and

f i − f i − 1 is a Gaussian field on RVN with mean l̃ik
N and covariance (l̃i)2 GN

under P̃K
N, where l̃i — li − li − 1=1 if i=1 and =`2 if i \ 2. f0 — 0 repre-

sents a hard-wall. By using these facts and Lemma 2.1, we obtain

P̃K
N((WK, +

N, e )c) [ C
K

i=1
C

x ¥ VN, e

PK
N(f i

x − f i − 1
x < − l̃ia log N)

[ CN2 exp 3 −
a2(log N)2

2gd log N
4 ,

for some constant C > 0 and the right hand side is o(1) if a > `4gd. The
positive constant C in the estimates may change from place to place in this
paper. Also, by ref. 3, we know that

lim
N Q .

1
(log N)2 H(PN p T−1

lik
N | PN)=

1
8

l2
i a2 ||Nf||2

2.

Finally, combining these facts with the entropy inequality:

log
P(A)
Q(A)

\ −
1

Q(A)
(H(Q | P)+e−1),

and optimizing the choice of f and a, we obtain the lower bound. L
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2.2. Proof of Theorem 1.1: Upper Bound

Let 0 < e < 1. For the proof of the upper bound, we consider the
mesoscopic scale of order Nc, 0 < c < 1 and the partition of VN, e=
{x ¥ VN; dist(x, Vc

N) \ eN} into the box with side-length 2Nc+1. For sim-
plicity, we always assume that Nc, eN are integers and 2Nc divides
N − eN+1. For j=(j1, j2), 1 [ j1, j2 [ N − eN+1

Nc , a divided mesoscopic scale
box is given by

Bc
j =[ − N+eN − 1+2Nc(j1 − 1), −N+eN − 1+2Ncj1]

× [ − N+eN − 1+2Nc(j2 − 1), −N+eN − 1+2Ncj2].

We call each box Bc
j just a c-box and denote by Pc the set of c-boxes in

VN, e. Note that each box has a center and the boundaries of neighboring
boxes intersect. The set of the whole boundary is given by

0
j

“Bc
j =3 − N+eN − 1+2Nck; 0 [ k [

N − eN+1
Nc

42

.

Fc denotes the s-field generated by {f i
x; x ¥ 1j “Bc

j , 1 [ i [ K}. For each
c-box B, xB represents the center of the box and we will denote
f i

B=E[f i
xB

|Fc] the conditional expectation of f i
xB

with respect to Fc. Note
that f i

xB
− f i

B is a centered Gaussian random variable with variance
GNc − 1(0, 0) under PK

N( · | Fc).
Now, set M0=2(;K

i=1 l2
i ) gdCe. For every g > 0, 0 < c < 1, L > 0, and

1 [ i [ K, we define an Fc-measurable event

A i
L, g, c={f; |{B ¥ Pc; f i

B [ (`4gd li − gi) log N}| [ Li},

where | · | denotes the cardinality of the set. Then, for the proof of the upper
bound, it is enough to show that the following two lemmas hold.

Lemma 2.2. For every 0 < e < 1 and g > 0, there exist 0 < c < 1 and
L > 0 such that

PK
N
113

K

i=1
A i

L, g, c
2c

5 WK, +
N, e

2 [ K exp{ − (M0+1)(log N)2}.

Lemma 2.3. For every 0 < e < 1, g > 0, 0 < c < 1 and L > 0, we
have that

lim sup
N Q .

1
(log N)2 log PK

N
113

K

i=1
A i

L, g, c
2 5 WK, +

N, e
2 [ − M0.
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The next lemma can be proved by following the argument of the proof
of Lemma 9 of ref. 3 and this plays an important role in the proof of
Lemma 2.2 and (1.2).

Lemma 2.4. Let f={fx}x ¥ VN
be a two dimensional centered

Gaussian field on RVN with covariance matrix given by qGN, q > 0. Define
an Fc-measurable event

AL, g, c={f ¥ RVN; |{B ¥ Pc; fB [ (`4qgd − g) log N}| [ L}.

Then, for every 0 < e < 1, g > 0 and M \ 0, there exists 0 < c0 < 1 such that
for every c0 < c < 1, there exists L0 > 0 and it holds that

PN((AL, g, c)c 5 {f; fx \ 0 for every x ¥ VN, e}) [ 2 exp{ − M(log N)2},

for every L \ L0.

Proof of Lemma 2.2. At first, note that

13
K

i=1
A i

L, g, c
2c

… 0
K

i=1
(A i − 1

L, g, c 5 (A i
L, g, c)

c),

where A0
L, g, c denotes (RVN)K. Therefore,

PK
N
113

K

i=1
A i

L, g, c
2c

5 WK, +
N, e

2

[ C
K

i=1
PK

N(A i − 1
L, g, c 5 (A i

L, g, c)
c 5 {f; f i

x − f i − 1
x \ 0 for every x ¥ VN, e}).

By the definition of A i
L, g, c, we observe that

A i − 1
L, g, c 5 (A i

L, g, c)
c … {|{B ¥ Pc; f i

B − f i − 1
B [ (`4gd l̃i − g) log N}| \ L}.

f i − f i − 1 is a centered Gaussian field with covariance (l̃i)2 GN under PK
N

and f i
B − f i − 1

B =EP
K
N[f i

xB
− f i − 1

xB
| Fc]. Hence we can use Lemma 2.4 and

obtain that there exist 0 < c < 1 and L > 0 such that

PK
N(A i − 1

L, g, c 5 (A i
L, g, c)

c 5 {f; f i
x − f i − 1

x \ 0 for every x ¥ VN, e})

[ exp{ − (M0+1)(log N)2},

for every 1 [ i [ K. L
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Proof of Lemma 2.3. Since,

13
K

i=1
A i

L, g, c
2 5 WK, +

N, e … 3
K

i=1
(A i

L, g, c 5 {f; f i
x \ 0 for every x ¥ VN, e}),

we have that

PK
N
13

K

i=1
A i

L, g, c 5 WK, +
N, e

2

[ D
K

i=1
PN(A i

L, g, c 5 {f; f i
x \ 0 for every x ¥ VN, e}).

Then, completely the same way to the proof of Lemma 10 of ref. 3, we can
prove the lemma. L

3. PROOF OF THEOREM 1.2

3.1. Proof of (1.2)

We will use the same notation to the proof of the upper bound
of Theorem 1.1. Also, we need the following notation: for each
z ¥ ṼNc — [ − Nc, Nc − 1]2 5 Z2, define Vc

N, e(z)=(2NcZ2+z0+z) 5 VN, e

where z0=(Nc, Nc) ¥ Z2. Vc
N, e(z) are disjoint for each z ¥ ṼNc and we have

VN, e=1z ¥ ṼNc Vc
N, e(z).

Lemma 3.1. For every 0 < e < 1, g > 0, and d > 0, there exists
0 < c < 1 such that

PK
N(|{B ¥ Pc; f i

xB
− f i − 1

xB
[ (`4gd l̃i − g) log N}| \ d|Pc | | WK, +

N, e )

=o(N−2c),

as N Q . for every 1 [ i [ K.

We shall prove this lemma later. Once we have Lemma 3.1, by shifting
the partition and the corresponding set of centers, we can obtain the similar
estimates. Then, since

{|{x ¥ VN, e; f i
x −f i−1

x [ (`4gd l̃i −g) log N}| \ d |VN, e |}

… 0
z ¥ ṼNc

{|{x ¥ Vc
N, e(z); f i

x −f i−1
x [ (`4gd l̃i −g) log N}| \ d |Vc

N, e(z)|},
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we can prove that

lim
N Q .

PK
N(|{x ¥ VN, e; f i

x − f i − 1
x [ (`4gd l̃i − g) log N}|

\ d |VN, e | | WK, +
N, e )=0, (3.1)

for every 0 < e < 1, g > 0, d > 0 and 1 [ i [ K. Note that {xB; B ¥ Pc}=
Vc

N, e(0).
On WK, +

N, e , if f i
x [ `4gd li −g, then at least either f i−1

x [ `4gd li−1 − 1
2 g

or f i
x − f i − 1

x [ `4gd l̃i − 1
2 g holds. Thus, we have

{|{x ¥ VN, e; f i
x [ (`4gd li − g) log N}| \ d |VN, e |}

… {|{x ¥ VN, e; f i − 1
x [ (`4gd li − 1 − 1

2 g) log N}| \ 1
2 d |VN, e |}

2 {|{x ¥ VN, e; f i
x − f i − 1

x [ (`4gd l̃i − 1
2 g) log N}| \ 1

2 d |VN, e |}.

Now, by using induction with respect to i and (3.1), we can prove the
following lemma and this yields (1.2) (cf. proof of (2.4) of ref. 14).

Lemma 3.2. For every 0 < e < 1, g > 0, d > 0 and 1 [ i [ K, we
have that

lim
N Q .

PK
N(|{x ¥ VN, e; f i

x [ (`4gd li − g) log N}| \ d |VN, e | | WK, +
N, e )=0.

Proof of Lemma 3.1. Let 0 < e < 1, g > 0, d > 0, L > 0, 0 < c < 1,
and 1 [ i [ K. Define

J i
g, c={B ¥ Pc; f i

xB
− f i − 1

xB
[ (`4gd l̃i − g) log N},

J̃ i
g, c={B ¥ Pc; f i

B − f i − 1
B [ (`4gd l̃i − g) log N}.

Recall that f i
B=EP

K
N[f i

xB
| Fc] for a mesoscopic scale box B ¥ Pc. We also

define events F i
d, g, c={|J i

g, c | \ d |Pc |} and Ã i
L, g, c={|J̃ i

g, c | [ L}. Then, we
have

PK
N(|{B ¥ Pc; f i

xB
− f i − 1

xB
[ (`4gd l̃i − g) log N}| \ d |Pc | | WK, +

N, e )

=PK
N(F i

d, g, c 5 Ã i
L, 1

2 g, c | WK, +
N, e )+PK

N(F i
d, g, c 5 (Ã i

L, 1
2 g, c)

c | WK, +
N, e ).
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On F i
d, g, c 5 Ã i

L, 1
2 g, c, we have that |J i

g, c 5 (J̃ i
1
2 g, c)

c| \ d |Pc | − L and if
B ¥ J i

g, c 5 (J̃ i
1
2 g, c)

c then |(f i
xB

− f i
B) − (f i − 1

xB
− f i − 1

B )| \ 1
2 g log N. This yields

PK
N(F i

d, g, c 5 Ã i
L, 1

2 g, c | WK, +
N, e )

[
1

PK
N(WK, +

N, e )
PK

N
1 C

B ¥ Pc

I 1 |(f i
xB

− f i
B) − (f i − 1

xB
− f i − 1

B )| \
1
2

g log N2

\ d |Pc | − L2 .

Under PK
N( · | Fc), {(f i

xB
− f i

B) − (f i − 1
xB

− f i − 1
B ); B ¥ Pc} are i.i.d. centered

Gaussian random variables with variance (l̃i)2 GNc − 1. Now, set h i
B —

I(|(f i
xB

− f i
B) − (f i − 1

xB
− f i − 1

B )| \ 1
2 g log N). Then {h i

B; B ¥ Pc} are i.i.d.
random variables under PK

N( · | Fc) and by a Gaussian estimate and Lem-
ma 2.1, we see that EP

K
N[h i

B | Fc] [ exp{ − Cg2 log N} for some constant
C > 0. Therefore, ;B ¥ Pc

(h i
B − EP

K
N[h i

B | Fc]) \ 1
2 d |Pc | for every N large

enough if ;B ¥ Pc
h i

B \ d |Pc | − L. Combining these facts, we obtain

PK
N(F i

d, g, c 5 Ã i
L, 1

2 g, c | WK, +
N, e )

[
1

PK
N(WK, +

N, e )
PK

N
1PK

N
1 C

B ¥ Pc

(h i
B − EP

K
N[h i

B | Fc]) \ 1
2 d |Pc | | Fc

22

[ exp{M0(log N)2} exp{ − C |Pc |}

[ exp{ − CN2(1 − c) − o},

for some o > 0 and C > 0, where we used Lemma 11 of ref. 3 and
Theorem 1.1 for the second inequality.

On the other hand, we have

PK
N(F i

d, g, c 5 (Ã i
L, 1

2 g, c)
c | WK, +

N, e )

[
1

PK
N(WK, +

N, e )
PK

N((Ã i
L, 1

2 g, c)
c 5 {f i

x − f i − 1
x \ 0 for every x ¥ VN, e}).

By using Theorem 1.1 and Lemma 2.4, for every 0 < e < 1 and g > 0, there
exist 0 < c < 1 and L > 0 such that

PK
N(F i

d, g, c 5 (Ã i
L, 1

2 g, c)
c | WK, +

N, e )

[ exp{M0(log N)2} exp{ − (M0+1)(log N)2}

=exp{ − (log N)2},

for every 1 [ i [ K. Therefore, we can complete the proof. L
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3.2. Proof of (1.3)

For the proof of (1.3), we shall prove the following lemma.

Lemma 3.3. For every 0 < e < 1 and 1 [ i [ K, we have that

lim sup
N Q .

1
log N

EP
K
N[SN, e(f i) | WK, +

N, e ] [ `4gd li,

where li=`2 (i − 1)+1.

Combining this lemma with Chebyshev inequality and (1.2), we can
obtain (1.3).

Proof of Lemma 3.3. We shall use the same notation to the proof
of the lower bound of Theorem 1.1 and prove a slightly better statement

lim sup
N Q .

sup
x ¥ VN

1
log N

EP
K
N[f i

x | WK, +
N, e ] [ `4gd li, (3.2)

for every 0 < e < 1, g > 0 and 1 [ i [ K. At first, we have a stochastic
domination in the FKG sense PK

N( · ) O P̃K
N( · ) as the probability measure

on (RVN)K and by approximating the condition WK, +
N, e by a convex potential,

we also have the stochastic domination P+
N( · | WK, +

N, e ) O P̃K
N( · | WK, +

N, e ) (cf.
ref. 11, Appendix B.1). Then, in the same way to the proof of the upper
bound of Theorem 4 of ref. 3, we have

EP
K
N[f i

x | WK, +
N, e ] [ E P̃

K
N[f i

x | WK, +
N, e ]

[
1

P̃K
N(WK, +

N, e )
(lia log N+`GN(x, x)).

Therefore, by the proof of Theorem 1.1 lower bound and Lemma 2.1, we
obtain the lemma. L

Remark 3.1. In the case of d=2, by using (3.2) and Brascamp–Lieb
inequality which can be applied to the conditioned measure PK

N( · | WK, +
N, e )

(cf. Appendix of ref. 9), the argument of the proof of the upper bound of
Theorem 4 of ref. 3 yields a slightly better result

lim
N Q .

sup
x ¥ VN

PK
N(f i

x \ (`4gd li+g) log N | WK, +
N, e )=0,

for every 0 < e < 1, g > 0 and 1 [ i [ K.
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